Diisobutylene-maleic acid (DIBMA)


Nanodisc
NEW: Less charged DIBMA (Glucosamine and Glycerol) and the Mix & Match Screening Kit are now availible!

Detergents (like SDS, n-octyl-β-d-glucopyranoside (OG), n-dodecyl-β-d-maltoside (DDM) are widely used in membrane protein solubilization even though it is well known that different detergents have different weaknesses.
Short chain nonionic detergents for example can affect the functional properties of a membrane protein (1). It seems clear that removing the native lipid bilayer from the membrane protein can interfere with the function of the protein. One way to mimic the native lipid membrane are MSP-nanodiscs (Fig. 1) or detergent-free polymer systems (Fig. 2) (Styrene-maleic acid co-polymers (SMAs) (2), Diisobutylene-maleic acid (DIBMA)) (3,4). With the latter you can directly extract membrane proteins from cells without an intermediate step of detergent solubilization (5). Synthetic polymers have to carry a styrene or maleic acid group himself to solubilize proteins.

Features

Usage Protein solubilization
Formula Weight ~12,000 g/mol or 10,000 g/mol
dn/dc 1.35 M-1
Solubility > 10 % in H2O
Absorbance at 280 nm < 0.3 (1 % solution)
Mg2+ Tolerance Dependend on DIBMA product
Increased with less charged DIMBAs
Ca2+ Tolerance Dependend on DIBMA product
Increased with less charged DIMBAs
Our DIBMA product sortiment:
We offer DIBMA in two different molecular weights (MW) and stored in two different Buffers (HEPES or TRIS). Choose your combination below.
  10.000 g/mol 12.000 g/mol
HEPES buffered DIMBA 10 in HEPES DIBMA 12 in HEPES
TRIS buffered DIMBA 10 in TRIS DIBMA 12 in TRIS
Unsure if DIBMA 10 or 12 is better suited for your experiment? For this reason we offer our practical DIBMA screening Kits. 12x50 mg DIBMA 10 and DIBMA 12 in TRIS or HEPES Buffer
  HEPES TRIS
  DIBMA in HEPES Mix & Match Screening Kit DIBMA in TRIS Mix & Match Screening Kit
You already know which DIBMA is the best one for you, but you are not sure how much you need? For this reason we offer our practical DIBMA 10 and DIBMA 12 specialized DIBMA screening Kits. 10x50mg each in TRIS or HEPES Buffer.
  10.000 g/mol 12.000 g/mol
HEPES buffered DIBMA 10 in HEPES Screening Kit DIBMA 12 in HEPES Screening Kit
TRIS buffered DIMBA 10 in TRIS Screening Kit DIMBA 12 in TRIS Screening Kit
 
 

Uncharged DIBMAS

In some cases the charge of normal DIBMA leads to complications when solubilizing and stabilizing certain proteins.
The reasons for this vary from protein to protein. To overcome all possible issues at once, we developped Glucosamin and Glycerol DIBMA. Through coupling on of these groups to DIBMA its own charge is reduced and nor charge- or ion related complications occur anymore.
 
  DIBMA Glucosamine DIBMA Glycerol
TRIS Buffered DIBMA Glucosamine in TRIS DIBMA Glycerol in TRIS
  DIMBA Glucosamine Screening Kit TRIS (10x50 mg) DIMBA Glycerol Screening Kit TRIS (10x50 mg)
HEPES Buffered DIBMA Glucosamine in HEPES DIBMA Glycerol in HEPES
  DIMBA Glucosamine Screening Kit HEPES(10x50 mg) DIMBA Glycerol Screening Kit HEPES (10x50 mg)

Nanodisc with protein
Fig.1: Nanodisc with a target protein and membrane scaffold proteins (MSPs, green).
 
Dibma with protein
Fig.2: Synthetic Polymers like SMA or DIBMA carrying a target protein.

Why it is advantageous to use PureCube DIBMA and not SMAs for your protein solubilization?


SMAs have big advantages in contrast to many detergents and are succsessfully used for many applications (6). The drawback of SMAs is a high absorbance of ultraviolet light in solution with an absorbance maxima at 280 nm. The main reason for this peak at 280 mn are aromatic amino acids like tryptophan or phenylalanine, SMA itself carries an aromatic ring. So quantitative protein concentration measuring of your sample is not possible during the process of membrane protein solubilization, stabilization and purification. With PureCube DIBMA from Cube Biotech you can solubilize, stabilize and purify your protein detergent-free and measure your protein concentration without any problems.
Dibma SDS-Page
Fig.3 : SDS Page showing solubilized membrane-protein fractions of E. coli. 10 mM (0.5 % (w/v)) DDM and 3 mM (2.5 % (w/v)) DIBMA was used. The figure is taken from Grethen et. al. 2017 (7).
 
Dibma Structure
Fig.4: Chemical structural formula of diisobutylene-maleic acid (DIBMA).

Why you should use PureCube DIBMA from Cube Biotech?


We provide our product highly purified and lyophilized. On top of that, PureCube DIBMA is lyophilized from two different buffer solutions (HEPES or TRIS) to ensure a stable pH at 7.5 which is ideal for most protein solubilizations. Feel free to contact us if you wish to have PureCube DIBMA in a different kind of buffer composition. For different applications you can choose from samples with a medium length of 10,000 or 12,000 g/mol.
DIBMA Comparision pellet
Fig. 5: DIBMA solubilizes protein from Pellet, supernatant 9000 xg and pellet 100000 xg. Differernt concentrations of DIBMA were used to determine the perfect solubilization conditions.

Less charged DIBMA

 
One challenge when working with traditional DIBMA is its sensitivity to the presence of ions inside the buffer / media. The reason for this is DIBMAs own charge that lets it interact with these ions. This leads to precipitation of DIBMA and therefore loss of its function. To overcome this issue we modified DIBMA to have a reduced charge to drastically reduce the affinity to the ions. This was achieved by adding either Glucosamine or an amino-functionalized diol to DIBMA (see figure 6 and 7). These two modified DIBMAs can be used for experiments for which the presence of ions is crucial for their success.
DIBMA-GlucosamineFig. 6: Chemical structural formula of diisobutylene-maleic acid (DIBMA) Glucosamine.
DIBMA-Glycerol
Fig. 7: Chemical structural formula of diisobutylene-maleic acid (DIBMA) Glycerol.
As figure 8 shows the increased tolerance of Ca2+ is necessary. Normally DIBMA starts to precipitate in Ca2+ holding buffers at concentration of around 25 mM. Using DIBMA-Glycerol this tolerance increases to 50 mM. There is no precipitate visible at the bottom of the tube. In comparison normal DIBMA shows a visible precipitate at 25 mM. In terms of Mg2+ tolerance traditional DIBMA and the Glycerol-DIBMA both show a high tolerance above 50 mM.
DIBMA and DIBMA Glycerol compared
Fig. 8: DIBMA precipitation in relation to the ion concentration. The shown concentrations start at 5 mM and are increasing in 5 mM steps up to 50 mM (skipping the 45 mM step).

Frequently asked questions

Is DIBMA from Cube Biotech ready to use?
Yes, our DIBMA is ready to use. You can start directly with solubilization. Read our protocol for more information.
 
Which pH is suitable for DIBMA?
For DIBMA a pH of 7.5 is recommended. DIBMA does not solubilize if the pH is smaller than 6.5.
 
Which concentrations of DIBMA should I use for my protein?
In general we advise you to add 2,5 % DIBMA to your solution. But the optimal conditions have to be screened by yourself (Fig. 5).
 
I used DIBMA for protein solubilization and a white precipitate appeared - what happened?
Your DIBMA precipitated. You should check your pH and ensure that your pH never drops down to 6.5.

References

  1. Seddon, Annela M., Paul Curnow, and Paula J. Booth. "Membrane proteins, lipids and detergents: not just a soap opera." Biochimica et Biophysica Acta (BBA)-Biomembranes 1666.1-2 (2004): 105-117.
  2. Knowles, Timothy J., et al. "Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer." Journal of the American Chemical Society 131.22 (2009): 7484-7485.
  3. Oluwole, Abraham Olusegun, et al. "Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer." Angewandte Chemie International Edition 56.7 (2017): 1919-1924.
  4. Oluwole, Abraham Olusegun, et al. "Formation of lipid-bilayer nanodiscs by diisobutylene/maleic acid (DIBMA) copolymer." 33.50 (2017): 14378-14388.
  5. Long AR, O’Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, Alder NN (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41
  6. Dörr, Jonas M., et al. "The styrene–maleic acid copolymer: a versatile tool in membrane research." European Biophysics Journal 45.1 (2016): 3-21.
  7. Grethen, Anne, et al. "Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2: 1) copolymer." Scientific reports 7.1 (2017): 11517.
  8. Oluwole, Abraham Olusegun, et al. „Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer.“ Angewandte Chemie International Edition 56.7 (2017): 1919-1924.
  9. Lee, Sarah C., et al. „A method for detergent-free isolation of membrane proteins in their local lipid environment.“ Nature protocols 11.7 (2016): 1149.
  10. Wessel, D. M., and U. I. Flügge. „A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids.“ Analytical biochemistry 138.1 (1984): 141-143.
 
Diisobutylene-maleic acid (DIBMA)
2 From 2
No results were found for the filter!
PureCube DIBMA Glycerol, Screening Kit, 10x50 mg, HEPES PureCube DIBMA Glycerol, Screening Kit, 10x50...
Article number: 18051
Sales price: €197.00 *
PureCube DIBMA Glycerol, 1 g, HEPES PureCube DIBMA Glycerol, HEPES
Article number: 18052
Sales price: From €309.00 *
PureCube DIBMA Glycerol, Screening Kit, 10x50 mg, TRIS PureCube DIBMA Glycerol, Screening Kit, 10x50...
Article number: 18054
Sales price: €197.00 *
PureCube DIBMA Glycerol, 1 g, TRIS PureCube DIBMA Glycerol, TRIS
Article number: 18055
Sales price: From €309.00 *
PureCube DIBMA Mix & Match, Screening Kit, 12x50 mg, HEPES PureCube DIBMA Mix & Match, Screening Kit,...
Article number: 18101
Sales price: €199.00 *
PureCube DIBMA Mix & Match, Screening Kit, 12x50 mg, TRIS PureCube DIBMA Mix & Match, Screening Kit,...
Article number: 18104
Sales price: €199.00 *
2 From 2
Viewed