PureCube Ni-NTA Agarose

Order number: 31103

€141.00*

Ready to ship today
Bead size
Quantity

Description

Our PureCube Ni-NTA agarose resins are your best option to purify His-tagged protein using FPLC, Batch spin, or column chromatography. Their size range from market standard 40 µm and 100 µm diameters to 400 µm (XL).

These three options provide plenty of possibilities to choose the correct agarose resin for your purpose. Chose smaller beads for higher mechanical stability and higher protein yield. Meanwhile bigger beads provide faster flow rates and the possibility to work with very viscous cell media.

Furthermore, you can also get these beads pre-packed in a column/cartridge or as magnetic beads.
Overview of different agarose bead sizes and their individual advantages
Figure 1: Overview of different agarose bead sized and the individual advantages each of them provides. Our standard product portfolio may only go up to 400 µm, but we can create all kinds of bead sizes for you on request.
Feature
Usage Specific binding and purification of 6x His tagged proteins
Specificity Affinity to His tagged proteins
Binding capacity 20 - 80 mg/ml, depending on bead size
Bead Ligand Ni-NTA
Bead size 40 μm, 100 µm, or 400 µm
Chelator stability Stable in buffer containing 10 mM DTT and 1 mM EDTA
Filling quantity Delivered as a 50 % suspension
Required equipment
  • Lysis Buffer
  • Wash Buffer
  • Elution Buffer
  • Ice bath
  • Refrigerated centrifuge for 50 mL tube (min 10,000 x g)
  • 50 mL centrifuge tube
  • Micropipettor and Micropipetting tips
  • Disposable gravity flow columns with capped bottom outlet, 2 ml
  • pH meter
  • End-over-end shaker
  • SDS-PAGE buffers, reagents, and equipment Optional: Western Blot reagents and equipment

Citations

Purified ProteinYearAuthorBead size
Glutamyl (aspartyl) specific aminopeptidase 2016 Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., & Fischer, L.  40 µm
Histidine kinase domain of Ethylene Response Sensor 1 2016 Hsieh, Y. L., Lu, C. F., Chiang, B. Y., Liao, S. C., Chen, R. P. Y., Lin, C. S., ... & Yang, C. C.  40 µm
Diacylglycerol kinase 2016 Rues, R. B., Henrich, E., Boland, C., Caffrey, M., & Bernhard, F.  40 µm
Channelrhodopsin 2 2017 Volkov, O., Kovalev, K., Polovinkin, V., Borshchevskiy, V., Bamann, C., Astashkin, R., & Büldt, G.  40 µm
PepA from Lactobacillus delbrueckii 2017 Ewert, J., Glück, C., Strasdeit, H., Fischer, L., & Stressler, T.  40 µm
Geobacillus sp. Manganese catalase 2017 Li, H. C., Yu, Q., Wang, H., Cao, X. Y., Ma, L., & Li, Z. Q. 40 µm
HrpII 2017 Bauer W.S., Richardson K.A., Adams N.M., Ricks K.M., Gasperino D.J., Ghionea S.J., Rosen M., Nichols K.P., Weigl B.H., Haselton F.R., Wright D.W., 40 µm
Plasmodium falciparum 6- phosphogluconate dehydrogenase 2018 Haeussler, K., Fritz-Wolf, K., Reichmann, M., Rahlfs, S., & Becker, K.  40 µm
mCherry protein 2018 Wang, X., Liu, Y., Liu, J., & Chen, Z. 40 µm
Arylsulfatase from Kluyveromyces lactis 2018 Stressler, T., Reichenberger, K., Glück, C., Leptihn, S., Pfannstiel, J., Swietalski, P., & Fischer, L.  40 µm
eIF3B2; eIF4A2; eIFiso4G1 and eIFiso4G2 2018 Cho H.-Y., Lu M.-Y. J., Shih M-C. 40 µm
flavin-dependent tryptophan 6-halogenase Thal 2018 Moritzer A.-C., Minges H., Prior T., Frese M., Seewald N., Niemann H.H. 40 µm
CagL 2019 Buß M., Tegtmeyer., Schnieder J., Dong X., Li J., Springer T.A., Backert S., Niemann H.H. 40 µm
PvG6PD 2019 Haessler K., Berneburg I., Jortzik E., Hahn J., Rahbari M., Schulz N., Preuss J., Zapol'skii V.A., Bode L., Pinkerton A.B., Kaufmann D.E., Rahlfs S., Becker K., 40 µm
Human serotonin transporter 2019 Worms D., Maertens B., Kubicek J., Subhramanyam U.K.T., Labahn J. 40 µm
CagL variants 2019 Buß M., Tegtmeyer N., Schnieder J., Dong X., Li J., Springer T.A., Backert S., Niemann H.H. 40 µm
AtEDS1 2019 Voß M., Tölzer C., Bhandari D., Parker J., Niefind K. 40 µm
PMMoV-CP 2019 Phatsaman T., Hongprayoon R., Wasee S. 40 µm
Metal Binding Phages 2019 Matys S., Schönberger N., Lederer F., Pollmann K. 40 µm
cysteine-less split intein 2019 Bhagawati M., Terhorst T., Füsser F., Hoffmann S., Pasch T., Pietrokovski S., Mootz H. 40 µm
Several different proteins 2020 Casas M.G., Stargargt P., Marihofer J., Wiltschi B. 40 µm
His-tagged proteins in inclusion bodies 2020 Lukas P. 100 µm
Helirhodopsin 48C12 2020 Kovalev K., Volkov D., Astashkin R., Alekseev A., Gushchin I., Haro-Moreno J.M., Chizhov I., Siletsky S., mamedov M., Rogachev A.V., Balandin T., Borshchevskiy V., Nopov A.N., Bourenkov G.P., Bamberg E., Rodriguez-Valera F., Büldt G., Gordeliy., 40 µm
MyBPC C2 and C0–2 2021 Schwäbe F.V., Peter E.K., Taft M.H., Manstein D.J 100 µm
BMP-7 CPLX 2021 Furlan A.G., Spanou C.E.S., Godwin A.R.F., Wohl A.P., Zimmermann L-M A., Imhof T., Koch M., Baldock C., Sengle G. 40 µm
Multiple proteins 2021 Mayerthaler F., Feldberg A.-L., Alfermann J., Sun X., Steinchen W., Yang H., Mootz H.D. 40 µm
emST 2021 Weihou G. 40 µm
LEXSY 2021 Zabelskii D., Dmitrieva N., Volkov O., Shevchenko V., Kovalev K., Balandin T., Dmytro S., Astashkin R., Zinovev E., Alekseev A., Round E., Polovinkin V., Chizhov I., Rogachev A., Okhrimenko I., Borshchevskiy V., Chupin V., Büldt G., Yutin N., Bamberg E., Koonin E., Valentin G. 40 µm
ApoE 2021 Xue T., Ji J., Sun Y., Huang X., Cai Z., Yang J., Guo W., Guo R., Cheng H., Sun X. 40 µm
Interferon lambda 2021 Kolářová L., Zahnradník J., Huličiak M., Mikulecký P., Peleg Y., Shemesh M., Schreiber G., Schneider B. 40 µm
NEDD8 and NAE1/UBA3 2021 Zhou et al. 40 µm
Bo3 oxidase 2022 Deutschmann S. 100 µm
cBag and C90 2022 Drwesh L., Heim B., Graf M., Kehr L., Hansen-Palmus L., Franz-Wachtel M., Macek B., Kalbacher H. 40 µm
Cytoskeletal actin 2022 Greve J.N., Schwäbe F.V., Pokrant T., Faix J., Donato N.D., Taft M.H., Manstein D.J. 40 µm
Cytoskeletal actin 2022 Veronica Teresa Ober 40 µm
Several His-tagged proteins 2022 Bagavant H., Cizio K., Araszkiewicz A.M., Papinska J.A., Garman L., Li G., Pezant N., Drake W. Montgomery C.G., Deshmukh U. 40 µm
atEDS1, PAD4 variants and vvPAD4 2022 Voß M. 40 µm
His-tagged carboxylases 2022 Artan M., Hartl M., Chen W., de Bono M. 40 µm
TPI1 2022 Liu G., Yang G., Duan S., Yuan P., Zhang S., Li F., Gao X-D., Nakanishi H. 40 µm
- 2022 Fatima S., Boggs D.G., Thompson P.J., Thielges M.C., Bridwell-Rabb J., Olshansky L. 40 µm
- 2022 Huang J., Zheng C., Luo R., Cao X., Mingjiang M., Qingquan Gu. Li F., Li J., Wu X., Yang Z., Shen X., Li X. 40 µm
RPA2 proteins 2022 Oo J.A., Pálfi K., Warwick T., Wittig I., Prieto-Gracia C., Matkovic. V., Tomašković I., Ponce J.I., Teichmann T., Petruikov K., Haydar S., Maegdefessel L., Wu Z., Pham M.D., Kirshnan J., Baker A.H., Günther S., Ulrich D.D., Dikic I., Brandes R.P. Undefined
promiscuous methyltransferase (pMT) 2022 Chen X., Rehka T., Esque J., Zhang C., Shukal S., Lim C. C. Ong L., Smith D., André I. 40 µm
OaGH5_5P 2022 Moye J., Schenk T., Hess S. 40 µm
Human PKL 2023 Nain-Perez A., Nilsson O., Lulla A., Håversen L., Brear P., Lijenberg S., Hyvonen M., Borén J., Grøtli M. 40 µm
KRas 2023 Walker G., Brown C., Ge X., Kumar S., Muzumdar M.D., Gupta K., Bhattacharyya M. 40 µm
Look in Publications 2023 Chazan A., Das I., Fujiwara T., Murakoshi S., Rozenberg A., Molina-Márquez A., Sano F.K., Tanaka T., Gómez-Villegas P., Larom S., Pushkarev A., Malakar P., Hasegawa M., Tsukamoto Y., Ishuzuka T., Konno Masae, Nagata T., Mizuno Y., Katayama K., Abe-Yoshizumi R., Ruhman S., Inoue K., Kandori H., León R., Shihoya W., Yoshizawa Susumu, Sheves M., Neurki Osamu, Béjà O., 40 µm
Proton Channel HV1 2023 Boytsov D., Brescia S., Chaves G., Koefler S., Hannesschlaeger C., Siligan C., Goessweiner-Mohr N., Musset B., Pohl P. 40 µm
His-tagged DON degrading enzymes 2023 Wang Y., Zhao D., Zhang W., Wang S., Wu Y., Wang S., Yang Y., Guo B. 40 µm
ACE2 2023 Harman M. A.J., Stanway S.J., Scott H., Demydchuk Y., Bezerra G.A., Pellegrino S., Chen L., Brear P., Lulla A., Hyvönen M., Beswick P.J., Skynner M.J. 40 µm
Trim33 2023 Rousseau V., Einig E., Jin C., Horn J., Riebold M., Poth T., Jarboui M-A., Flentje M., Popov N. 40 µm
Antenna-containing rhodopsin pumps 2023 Chazan A., Das I., Fujiwara T., Murakoshi S., Rozenberg A., Molina-Márquez A., Sano F.K., Tanaka T., Gómez-Villegas P., Larom S., Pushkarev A., Malakar P., Hasegawa M., Tsukamoto Y., Ishizuka T., Konno M., Nagata T., Yosuke M., Katayama K., Abe-Yoshimizu R., Ruhman S., Inoue K., Kandori H., León R., Shihoya W., Yoshizawa S., Sheves M., Nuerki O., Béjà O. 40 µm
Cystein-Variants of TcAAH 2023 Blinn C.M. 40 µm
His-tagged Ubiquitin Variants 2023 Chao Jin 40 µm
Cas9 Fusion Proteins 2024 Pasch T., Bäumer N., Bäumer S., Buchholz F., Mootz H.D. 40 µm
Human cardiac α-actin (wt and mutants) 2024 Greve.J.N., Schwäbe F.V., Taft M.H., Manstein D.J. 100 µm

Lab Results

High yield and purity

Our unique production process yields a Ni-NTA Agarose that exhibits a protein binding capacity >20% higher than that of two leading competitor products. Figure 1 shows the SDS-PAGE of GFP expressed in E. coli and purified in gravity colums with PureCube Ni-NTA Agarose and the Ni-NTA resin from Competitor G and Competitor Q. The protein yield in 4 elutions (E1-E4, Cube) was 80 mg/mL, compared to 65 and 48 mg/mL obtained with the alternative resins (E1-E4, Competitor G, Competitor Q). Similar results (10-18% higher binding capacity; data not shown here) were obtained comparing the purification of JNK1 (Kinase, 48 kDa) on PureCube Ni-NTA and the Ni-NTA of leading providers.
PureCube Ni-NTA compared to other competitors
Figure 1: Over 20% more yield obtained with PureCube Ni-NTA Agarose. SDS-PAGE of GFP expressed in E. coli and purified in gravity columns with PureCube Ni-NTA Agarose and Ni-NTA resin from Competitor Q. 80 mg/mL protein yield was obtained with PureCube Ni-NTA Agarose (E1–E4, Cube) compared to 65 and 48 mg/mL, respectively, with the widely used alternative resins G and Q (E1–E4, Competitor G / Competitor Q).
Superior DTT and EDTA stability

PureCube Ni-NTA Agarose is very robust in the presence of DTT and EDTA. In a stability test, PureCube Ni-NTA Agarose was exposed to increasing concentrations of DTT or EDTA for 1 h. Thereafter, the resins were used to purify E. coli-expressed GFP-His in gravity columns. The binding capacity of the resin decreased in the presence of both DTT and EDTA but the decay rate was shallow. In presence of DTT, PureCube Ni-NTA Agarose lost on average 8% binding capacity with each increase in DTT concentration, resulting in an overall decay of 22% at 10 mM. Even at 1.5 mM EDTA, the resin still exihibits 54% of its maximum binding capacity (Fig. 2).
EDTA tolerance of PureCube Ni-NTA
Figure 2: NTA is robust in the presence of reducing and chelating agents. GFP-His was purified on gravity columns containing PureCube Ni-NTA Agarose after exposing the resin for 1 h to 3 concentrations of DTT or EDTA. NTA exhibits a shallow decay rate in binding capacity.
Robust against oxidation and regenerable

PureCube Ni-NTA Agarose retains its color and function after exposure to as much as 10 mM DTT. Figure 3 shows a photo series of the resin after a 1 h exposure to 5 mM DTT. Unlike other resins, PureCube Ni-NTA Agarose did not turn brown (A). The resin was still able to bind GFP (B), with a measured binding capacity of 65 mg/mL (see Fig. 2). The resin could then be regenerated by stripping the NTA, turning the resin white (C), and reloading it with nickel ions (D). The protocol for regenerating PureCube Ni-NTA Agarose can be downloaded.
EDTA tolerance of PureCube Ni-NTA
Figure 3: PureCube Ni-NTA Agarose is robust against oxidation and regenerable. PureCube Ni-NTA Agarose was exposed to 5mM DTT for 1 h (A). After demonstrating that it could still bind GFP (B), the resin was washed, stripped (C), and reloaded with Ni2+ (D) following standard Cube protocol (see Cube Protocols & Datasheets).

Video

Video Guide - How to pack FPLC cartridges


Video Guide - FPLC


Video Guide - Column Chromatography


Video Guide - Batch Spin Chromatography


FAQ

Can I get the datasheets for the Ni-NTA resins?

Yes. Just chose the datasheet you need from the list below.

What are the reasons for nonspecific binding?

Some other histidine-rich proteins can also bind to nickel. But washing with NaOH after elution of your protein of interest removes unspecific bound proteins from your resin.

I want to use a high concentration of EDTA and DTT. Is it possible to use Ni-NTA from Cube Biotech?

No, it is not recommended because nickel is reduced with DTT or dissolved with EDTA. If you want to use high concentrations of EDTA and DTT you should use our INDIGO-Ni resin.

How is the capacity at high flow rates?

If higher flow rates are desired we recommend using beads with bigger diameters. We offer Ni-NTA beads with mean diameters of 40µm, 100µm, and 400µm (XL).

With each size increase, the flow rates also increase due to the proportionally increasing space between the beads. However, the surface of the beads does not increase at the same speed as the diameter (square-cube-law). That results in decreasing amounts of purified protein per mL beads while increasing the bead sizes.

For 40µm of 100µm beads, we both have average purification amounts of ~80 µg protein/mL beads. With 400 µm (XL) beads, this decreases to ~20 µg/mL.

We recommend reading the corresponding section of the "Introduction to agarose matrixes" guide on this subject for more detailed information.

After using DTT my resin turned orange. How to regenerate it?

The DTT has probably destroyed your beads. Ni-NTA beads only have a limited DTT tolerance of about 1 mM. However, you can regenerate them to regain their functionality. Please read our detailed protocol for more information regarding this.

However, we would recommend using Ni-INDIGO products instead. They work with the same buffers and protocols as the Ni-NTA products but have a DTT tolerance of 20 mM.